

Holiday Homework

Class: X

Subject: Mathematics

- 1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
 - (i) $5x^2 29x + 20$ (ii) $x^2 5x$
- 2. Form the quadratic polynomials whose zeroes are (i) $3 \pm \sqrt{2}$ (ii) $-\sqrt{2}$ and $\sqrt{2}$
- 3. Find all the zeroes of $x^3 + 6x^2 + 11x + 6$ if (x+1) is a factor.
- 4. Find the all the zeroes of $x^3 10x^2 + 31x 30$ if 2 is a zero of it.
- 5. Find the values of 'a' and 'b', if 2 and 3 are zeroes of $x^3 + ax^2 + bx 30$
- 6. Divide $x^4 4x^3 + 8x^2 + 7x + 10$ by (x 2) and verify the division algorithm.
- 7. Find the value of 'k', if (x-2) is a factor of $x^2 kx + 10$.
- 8. Find the value of 'm', if 2 is a zero of $3x^2 17x + m$.
- 9. Find the all the zeroes of $4x^4 20x^3 + 23x^2 + 5x 6$ if two of its zeroes are 2 and 3.
- 10. If α and β are the zeroes of $x^2 + 5x + 6$, find the value of $\alpha^{-1} + \beta^{-1}$.
- 11. If $\frac{1}{2}$ and 1 are the zeroes of $2x^4 3x^3 3x^2 + 6x 2$, find the other zeroes.
- 12. If one of the zeroes of the polynomial $5z^2 + 13z p$ is the reciprocal of the other, find 'p'.
- 13. On dividing the polynomial $4x^4 3x^3 42x^2 55x 17$ by the polynomial g(x) the quotient is $x^2 3x 5$ and the remainder is 5x + 8. Find g(x).
- 14. Verify that 1, 2 and $\frac{1}{2}$ are zeroes of $2x^3 + x^2 5x + 2$. Also, verify the relationship between the zeroes and the coefficients.
- 15. If α and β are the zeroes of the quadratic polynomial $x^2 kx + 15$ such that $(\alpha + \beta)^2 2\alpha\beta = 34$, find 'k'.
- 16. If one zero of polynomial $2x^2 3x + p$ is 3, then find the other root. Also, find the value of 'p'.
- 17. If α and β are the zeroes of the quadratic polynomial $ax^2 + bx + c$, find the value of $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- 18. If α and β are the zeroes of $2x^2 9x + 10$, form the polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\alpha}$.
- 19. The curve which represents a quadratic polynomial meets the X-axis at (2, 0) and (-2, 0). Form the quadratic polynomial.
- 20. Find the values of 'a' and 'b' such that $x^4 + x^3 + 8x^2 + ax + b$ is exactly divisible by $x^2 + 1$.
- 21. If the polynomial $p(x) = x^4 6x^3 + 16x^2 25x + 10$ divided by $x^2 2x + k$, the remainder is x + a. Find 'k' and 'a'.
- 22. The zeroes of $x^2 kx + 6$ are in the ratio 3:2, find 'k'.
- 23. What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$?
- 24. What must be added to $4x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- 25. Divide $2x^2 + 4x^3 + 5x 6$ by $2x^2 + 1 + 3x$ and verify the division algorithm.