

Holiday Homework

Class: XII (CBSE)

- 1. Show that the relation R defined by (a, b) R (c, d) if a + d = b + c on the set N×N is an equivalence relation.
- 2. State whether the function f: N \rightarrow N given by f(x) = 5x is injective, surjective or both.
- 3. Let $f: N \to N$ be defined by

 $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even.} \end{cases}, \text{ for all } n \text{ for all } n \in N.$

Find whether the function f is bijective.

- 4. If f(x) = x + 7 and g(x) = x 7, $x \in R$, find (fog) (7).
- 5. If f: R \rightarrow R defined as f(x) = $\frac{2x-7}{4}$ is an invertible function, find f^{-1} .
- 6. Show that the relation R in the set A = { 1,2,3,4,5 } given by R= { (a, b) : |a b| is an equivalence relation.
- 7. Show that the relation R in R defined by $R = \{ (a, b) : a \le b \}$, is reflexive and transitive but not symmetric
- 8. Let A= R {3} and B = R {1, Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Show that f is one-one and onto.
- 9. If $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (3 x^3)^{\frac{1}{3}}$, find the value of $f \circ f(x)$.
- 10. Consider $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 4x + 3, show that f is invertible. Find the inverse of f.
- 11. Let f(x) = [x] and g(x) = x, find gof(-5/3) fog(-5/3).
- 12. Consider $f: \mathbb{R}^+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y-6}-1}{3}\right)$.
- 13. Let * be a binary operation on the set of all non zero real numbers, given by a * b = $\frac{ab}{5}$ for all a, b \in R { 0 }. Find the value of *x*, given that 2 * (*x* * 5) = 10.
- 14. Consider the binary operation * : R X R → R and : R X R → R defined as a * b = | a b | and a b = a for all a, b ∈ R. Show that '*' is commutative but not associative, '○' is associative but not commutative.
- 15. Consider the binary operation * on the set {1, 2, 3, 4, 5} defined by a * b = min (a, b). Write the operation table of the operation *.