## Holiday Homework

## Class: XII (CBSE)

1. Show that the relation $R$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ on the set $N \times N$ is an equivalence relation.
2. State whether the function $f: N \rightarrow N$ given by $f(x)=5 x$ is injective, surjective or both.
3. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by

$$
\mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}
\frac{n+1}{2}, \quad \text { if } n \text { is odd } \\
\frac{n}{2}, \quad \text { if } n \text { is even. }
\end{array} \quad \text {, for all } \mathrm{n} \text { for all } n \in N .\right.
$$

Find whether the function f is bijective.
4. If $f(x)=x+7$ and $g(x)=x-7, x \in R$, find (fog) (7).
5. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined as $\mathrm{f}(\mathrm{x})=\frac{2 x-7}{4}$ is an invertible function, find $f^{-1}$.
6. Show that the relation R in the set $\mathrm{A}=\{1,2,3,4,5\}$ given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|a-b|$ is an equivalence relation.
7. Show that the relation R in R defined by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \leq b\}$, is reflexive and transitive but not symmetric
8. Let $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\left\{1\right.$, Consider the function $f: \mathrm{A} \rightarrow \mathrm{B}$ defined by $f(\mathrm{x})=\frac{x-2}{x-3}$. Show that $f$ is one-one and onto.
9. If $f: \mathrm{R} \rightarrow \mathrm{R}$ be given by $f(\mathrm{x})=\left(3-\mathrm{x}^{3}\right)^{\frac{1}{3}}$, find the value of $f \mathrm{of}(\mathrm{x})$.
10. Consider $f: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$, show that $f$ is invertible. Find the inverse of $f$.
11. Let $f(\mathrm{x})=[\mathrm{x}]$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}$, find gof $(-5 / 3)-f$ og $(-5 / 3)$.
12. Consider $\mathrm{f}: \mathrm{R}^{+} \rightarrow[-5, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible with $f^{-1}(\mathrm{y})=\left(\frac{\sqrt{y-6}-1}{3}\right)$.
13. Let * be a binary operation on the set of all non - zero real numbers, given by a $* \mathrm{~b}=\frac{a b}{5}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}-\{0\}$. Find the value of $x$, given that $2 *(x * 5)=10$.
14. Consider the binary operation * : $R X R \rightarrow R$ and $\circ: R X R \rightarrow R$ defined as $a * b=|a-b|$ and $\mathrm{a} \circ \mathrm{b}=\mathrm{a}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Show that '*' is commutative but not associative, ' $\circ$ ' is associative but not commutative.
15. Consider the binary operation * on the set $\{1,2,3,4,5\}$ defined by a $*=\min (a, b)$. Write the operation table of the operation *.

