1. Find the value of x, if $5^{x-3}-3^{2 x-8}=225$.
2. If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, then find the value of $x^{2}+x y-y^{2}$.
3. Find the value of a and b so that $x+1$ and $x-1$ are factors of $x^{4}+a x^{3}+2 x^{2}-3 x+b$.
4. Divide polynomial $p(x)=3 x^{4}+4 x^{3}+4 x^{2}-8 x+1$ by $q(x)=3 x+1$. Also, find what should be added to $p(x)$ so that it is completely divisible by (x).
5. Factorise the following using suitable identities:
i. $\quad x^{2}-y^{2}+2 x+1$
ii. $\quad 9 a^{2}-4 b^{2}-6 a+1$
iii. $\quad a^{4}-16 b^{4}$
6. Prove that $(x+y)^{3}+(y+z)^{3}+(z+x)^{3}-3(x+y)(y+z)(z+x)=2\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
7. Plot the following points in the coordinate plane: $\mathrm{A}(-4,4), \mathrm{B}(-6,0), \mathrm{C}(-4,-4), \mathrm{D}(-2,0)$ and name the figure formed by joining points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D also find its area.
8. $\mathrm{P}(3,2)$ and $\mathrm{Q}(7,7)$ are two points. Perpendiculars are drawn to the X -axis from P and Q meeting the X -axis at L and M respectively.
i. Find the coordinates of L and M.
ii. Find the length of LM.
9. If a point lies on the y-axis, then what will be its abscissa?
10. A floor design is made on a floor of a room by joining four triangular tiles of dimensions $12 \mathrm{~cm}, 20 \mathrm{~cm}$ and 24 cm each. Find the cost of the tiles at the rate of ₹ $\sqrt{9}$ per cm^{2}.
