

Holiday Homework

Class: XI Subject: Mathematics

1. Find the most general solution of
$$\tan x = \frac{1}{\sqrt{3}}$$
, $\sec x = \frac{2}{\sqrt{3}}$

2. Solve
$$5\cos^2\theta + 7\sin^2\theta = 6$$

3. Solve
$$3\sin^4 x + \cos^4 x = 1$$

4. Solve
$$\cot x + \csc x = \sqrt{3}$$

5. Solve
$$\sin \theta + \sin 5\theta = \sin 3\theta$$
, $0 < \forall < \pi$

6. α, β are the solutions of the equation $a\cos\theta + b\sin\theta = 0$, where $a, b, c \in \mathbb{R}$, $\cos\alpha \neq \cos\beta$ and $\sin \alpha \neq \sin \beta$ then show that

i)
$$\cos \alpha + \cos \beta = \frac{2ac}{a^2 + b^2}$$

i)
$$\cos \alpha + \cos \beta = \frac{2ac}{a^2 + b^2}$$
 ii) $\cos \alpha \cos \beta = \frac{c^2 - b^2}{a^2 + b^2}$

7. If
$$|\tan x| = \tan x + \frac{1}{\cos x}$$
 and $x \in [0, 2\pi]$, find the value of x.

By using mathematical induction show that 8.

$$\forall n \in \mathbb{N}, \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + ---- \text{upto n terms} = \frac{n}{3n+1}$$

9. Using mathematical induction prove that
$$49^n + 16n - 1$$
 is divisible by 64, $\forall n \in \mathbb{N}$

10.
$$3.5^{2n+1} + 2^{3n+1}$$
 is divisible by 17.