

Sri Sainath Nagar, Tirupati – 517 102 Holiday Homework (19-08-2018 to 26-08-2018)

Class: XII

Subject: CHEMISTRY

- 1. The electrical resistance of a column of 0.05 mol L^{-1} NaOH solution of diameter 1 cm and length 50 cm is 5.55×10^3 ohm. Calculate its resistivity, conductivity and molar conductivity.
- 2. Calculate Λ_m° for CaCl₂ and MgSO₄ from the data given in Table 3.4 (Text book).
- 3. A solution of CuSO₄ is electrolysed for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode?
- 4. Predict the products of electrolysis in each of the following:

(a) An aqueous solution of AgNO₃ with silver electrodes.

(b) A dilute solution of H_2SO_4 with platinum electrodes.

(c) An aqueous solution of $CuCl_2$ with platinum electrodes.

5. Using the standard electrode potentials given in Table 3.1 (Text book), predict if the reaction between the following is feasible:

(*i*) $\operatorname{Fe}^{3+}(aq)$ and $\operatorname{I}^{-}(aq)$, (*ii*) $\operatorname{Ag}^{+}(aq)$ and $\operatorname{Cu}(s)$, (*iii*) $\operatorname{Fe}^{3+}(aq)$ and $\operatorname{Br}^{-}(aq)$, (*iv*) $\operatorname{Ag}(s)$ and $\operatorname{Fe}^{3+}(aq)$.

6. Write the Nernst equation and *emf* of the following cells at 298 K:

(a) $Fe(s)|Fe^{2+}(0.001 \text{ M})||H^{+}(1 \text{ M})|H_2(g)(1 \text{ bar})| Pt(s)$

- (b) $Pt(s)|Br_2(l)|Br^-(0.010 \text{ M})||H^+(0.030 \text{ M})|H_2(g)(1 \text{ bar})|Pt(s).$
- 7. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is (*i*) doubled (*ii*) reduced to half?
- 8. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
- 9. During nuclear explosion, one of the products is 90 Sr with half-life of 28.1 years. If 1µg of 90 Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically?
- 10. A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.
- 11. The rate constant for the decomposition of hydrocarbons is 2.418×10^{-5} s⁻¹ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor?
- 12. The rate constants of a reaction at 500 K and 700 K are 0.02 s⁻¹ and 0.07 s⁻¹ respectively. Calculate the values of E_a and A.